Resources

Looking for manuals, software, or help with the LI-6800?

Visit the technical support center for software, operating instructions, videos, and tips.

Support Center

Protect your research with a LI-COR service agreement or maintenance plan.

Learn more about the benefits and coverage options we offer to keep your instruments protected.

Service Agreement & Plans

Brochures

LI-6800 Portable Photosynthesis System

LI-6800 Portable Photosynthesis System

LI-6800 Sistema Portable de Fotosintesis

LI-6800 Sistema Portable de Fotosintesis

LI-6800 Chambers and Light Sources

LI-6800 Chambers and Light Sources

Field guide to instruments for the earth sciences

Field guide to instruments for the earth sciences

Posters

Training Courses

Photosynthesis training courses are offered throughout the year at various locations around the world. Courses provide information on instrument use, theory, data processing, maintenance, and related topics.

Register early, as class sizes are limited and fill quickly. LI‑COR reserves the right to cancel a session 3 weeks prior.

Courses are designed for users who have little or no experience with the LI‑6800, but may also be useful as a refresher for users with more experience. Some of the topics covered during the courses include:

  • Fundamentals of making gas exchange and fluorescence measurements
  • LI-6800 hardware and software introduction
  • Environmental control
  • Making survey and response curve measurements
  • Maintenance, calibration and troubleshooting

Training Schedule

DateTimeLocationLanguage
January 14th - 15th, 20259:00AM to 4:30PM CTRemoteEnglish
February 11th - 12th, 20259:00AM to 5:00PM CTLincoln, NEEnglish
March 18th - 19th, 20259:00AM to 5:00PM CTLincoln, NEEnglish
April 15th - 16th, 20259:00AM to 5:00PM CTLincoln, NEEnglish
May 13th - 14th, 20259:00AM to 5:00PM CTLincoln, NEEnglish
June 9th - 13th, 20259:00AM to 5:00PM CTLincoln, NEEnglish

Additional Information

Attendees are responsible for their own travel, lodging, and other meal expenses. LI-COR has negotiated a special rate with a hotel and will make reservations for attendees. Attendees are responsible for providing their own payment information at check-in. Attendees must bring their own instrument to the course.

References

Ashe, P., Shaterian, H., Akhov, L., Kulkarni, M., & Selvaraj, G. (2017, December 14). Contrasting Root and Photosynthesis Traits in a Large-Acreage Canadian Durum Variety and Its Distant Parent of Algerian Origin for Assembling Drought/Heat Tolerance Attributes. Frontiers in Chemistry, 5(121). https://doi.org/10.3389/fchem.2017.00121

Caine, R. S., Yin, X., Sloan, J., Harrison, E. L., Mohammed, U., Fulton, T., … Gray, J. E. (2018). Rice with reduced stomatal density conserves water and has improved drought tolerance under future climate conditions. New Phytologist, 221(1), 371¬–384. https://doi.org/10.1111/nph.15344

Dutt, M., Zambon, F. T., Erpen, L., Soriano, L., & Grosser, J. (2018, January 2). Embryo-Specific Expression of a Visual Reporter Gene as a Selection System for Citrus Transformation. PLoS ONE, 13(1), e0190413. https://doi.org/10.1371/journal.pone.0190413

Evans, J. R., Morgan, P. B., & von Caemmerer, S. (2017, October 1). Light Quality Affects Chloroplast Electron Transport Rates Estimated from Chl Fluorescence Measurements. Plant Cell Physiology, 58(10), 1652–1660. https://doi.org/10.1093/pcp/pcx103

Fang, L., Yin, X., van der Putten, P.E.L., Martre, P. and Struik, P.C. (2022). Drought exerts a greater influence than growth temperature on the temperature response of leaf day respiration in wheat (Triticum aestivum). Plant, Cell & Environment, 45(7), pp.2062–2077. https://doi.org10.1111/pce.14324

Garcia, M. N. M., Cortelezzi, J. I., Fumagalli, M., & Capiati, D. A. (2018, September). Expression of the Arabidopsis ABF4 gene in potato increases tuber yield, improves tuber quality and enhances salt and drought tolerance. Plant Molecular Biology, 98, 137–152. https://doi.org/10.1007/s11103-018-0769-y

Guha, A., Han, J., Cummings, C., McLennan, D. A., & Warren, J. M. (2018, April). Differential Ecophysiological Responses and Resilience to Heat Wave Events in Four Co-occurring Temperate Tree Species. Environmental Research Letters, 13(6). https://doi.org/10.1088/1748-9326/aabcd8

Hupp, J., McCoy, J.I.E., Millgan, A.J. and Peers, G. (2021). Simultaneously measuring carbon uptake capacity and chlorophyll a fluorescence dynamics in algae. Algal Research, 58, p.102399. https://doi.org/10.1016/j.algal.2021.102399

Johnson, J. E., Berry, J. A. (2021, May 17) The role of Cytochrome b6f in the control of steady-state photosynthesis: a conceptual and quantitative model. Photosynthesis Research, 148, 101–136. https://doi.org/10.1007/s11120-021-00840-4

Loriaux, S.D., Avenson, T.J., Welles, J.M., McDermitt, D.K., Eckles, R.D., Riensche, B. and Genty, B. (2013). Closing in on maximum yield of chlorophyll fluorescence using a single multiphase flash of sub-saturating intensity. Plant, Cell & Environment, 36(10), pp.1755–1770. https://doi.org/10.1111/pce.12115

Márquez, D.A., Stuart‐Williams, H., Farquhar, G.D. and Busch, F.A. (2021). Cuticular conductance of adaxial and abaxial leaf surfaces and its relation to minimum leaf surface conductance. New Phytologist. https://doi.org/10.1111/nph.17588

Reeves, G., Singh, P., Rossberg, T. A., Sogbohossou, D., Schranz, E., & Hibberd, J. (2018, January 25). Quantitative Variation Within a Species for Traits Underpinning C4 Photosynthesis. bioRxiv 253211. https://doi.org/10.1101/253211

Saathoff, A.J. and Welles, J. (2021). Gas exchange measurements in the unsteady state. Plant, Cell & Environment, 44(11), pp.3509–3523. https://doi.org/10.1111/pce.14178

Sales, C.R.G., Molero, G., Evans, J.R., Taylor, S.H., Joynson, R., Furbank, R.T., Hall, A. and Carmo-Silva, E. (2022). Phenotypic variation in photosynthetic traits in wheat grown under field versus glasshouse conditions. Journal of Experimental Botany. https://doi.org10.1093/jxb/erac096

Shi, W., Cheng, J., Wen, X., Wang, J., & Shi, G. (2018). Transcriptomic studies reveal a key metabolic pathway contributing to a well-maintained photosynthetic system under drought stress in foxtail millet (Setaria italica L.). PeerJ6:e4752. https://doi.org/10.7717/peerj.4752

Slot, M., Krause, G. H., Krause, B., Hernández, G. G., & Winter, K. (2019). Photosynthetic heat tolerance of shade and sun leaves of three tropical tree species. Photosynthesis Research 141, 119–130. https://doi.org/10.1007/s11120-018-0563-3

Taylor, S. H., & Long, S. P. (2017, September 26). Slow Induction of Photosynthesis on Shade to Sun Transitions in Wheat May Cost at Least 21% of Productivity. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1730). https://doi.org/10.1098/rstb.2016.0543

Urban, L., Aarrouf, J., & Bidel, L. R. (2017). Assessing the Effects of Water Deficit on Photosynthesis Using Parameters Derived from Measurements of Leaf Gas Exchange and of Chlorophyll a Fluorescence. Frontiers in Plant Science, 8(2068). https://doi.org/10.3389/fpls.2017.02068

Norby, R.J., Baxter, T., T. Živković and Weston, D.J. (2023). Shading contributes to Sphagnum decline in response to warming. Ecology and Evolution, 13(9). doi:https://doi.org/10.1002/ece3.10542